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We extend the Kitaev model defined for the Pauli matrices to the Clifford algebra of I" matrices, taking the
4 X4 representation as an example. On a decorated square lattice, the ground state spontaneously breaks
time-reversal symmetry and exhibits a topological phase transition. The topologically nontrivial phase carries
gapless chiral edge modes along the sample boundary. On the three-dimensional (3D) diamond lattice, the
ground states can exhibit gapless 3D Dirac-cone-like excitations and gapped topological insulating states.
Generalizations to even higher rank I matrices are also discussed.
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I. INTRODUCTION

Topological phases of condensed matter have attracted in-
creasing attention in recent years. Examples include spin lig-
uids, fractional quantum Hall (FQH) states, and topological
insulators, which exhibit fractionalized excitations and
statistics.!™!3 A particularly novel application has been the
proposal of utilizing non-Abelian elementary excitations of
topological phases to achieve fault-tolerant topological quan-
tum computation.”'* To this end, Kitaev,” in a seminal paper,
introduced a model of interacting spins on a honeycomb lat-
tice which reduces to the problem of Majorana fermions
coupled to a static Z, gauge field. The ground state is topo-
logically nontrivial and breaks time-reversal (TR) symmetry,
and the elementary excitations are anionic, with non-Abelian
statistics. Much progress has been made toward understand-
ing the nature of this phase®!>?3 and in generalizing the
model to other lattices®?*?% and to three dimensions.?® Very
recently, a generalization to a decorated honeycomb lattice
exhibiting a chiral spin-liquid ground state was made by Yao
and Kivelson.? On the experimental side, the V=§ FQH state
is expected to realize non-Abelian anyons.?’-?° Time-reversal
invariant topological states have also been realized in HgTe
semiconductor quantum wells*® and in Bi,_,Sb, alloys.?!

The solvability of the Kitaev model depends crucially on
the property of the Pauli matrices, ie., {0;,0;}=26;; and
0,0,0,=i, which are the simplest example of a Clifford al-
gebra. This gives rise to the constraint that all the above
models are defined in lattices with coordination number 3,
and thus most of them are on lattices of dimension two.
Extending the Kitaev model to more general lattices, three
dimensions, and large spin systems enriches this class of
solvable topological models. These extensions naturally in-
volve higher ranked Clifford algebras, with
2" X 2"(n=2)-dimensional matrices, which can be inter-
preted as high spin-multipole operators. Some early work on
exactly solvable models in the I'-matrix representation of the
Clifford algebra has been done in Refs. 32-34.

In this article, we generalize the Kitaev model from the
Pauli matrices to the Clifford algebra of I matrices. For the
4 X4 representation, we construct a model in a decorated
square lattice with coordination number 5, which can be in-
terpreted as a spin-% magnetic model with anisotropic inter-
actions involving spin-quadrapole operators only. It is inter-
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esting that although each spin-quadrapole operator is TR
invariant, the ground state spontaneously breaks TR symme-
try. Such a state is a topologically nontrivial chiral spin-
liquid state with extremely short-ranged spin correlation
functions. The topological excitations are expected to be
non-Abelian. The I'-matrix formalism is also convenient to
define a three-dimensional (3D) counterpart of the Kitaev
model on the diamond lattice. By breaking the TR symmetry
explicitly, a gapless spin liquid with a 3D Dirac-cone-like
spectrum is found. Topological insulating states with TR
symmetry also may be elicited on the diamond lattice. A
generalization to even higher rank I' matrices is also dis-
cussed, wherein a topologically nontrivial spin-liquid state
appears along which manifests a suitable defined “time-
reversal-like” symmetry.

II. 2D CHIRAL SPIN LIQUID WITH I' MATRICES
A. Remarks on the nature of Kitaev’s model

Before elucidating the details of our model, it will prove
useful to reflect on why the Kitaev model is equivalent to
noninteracting fermions in a static Z, gauge field. The T’
matrices obeying the Clifford algebra {['*,I'’}=285" may be
represented in terms of 2n Majorana fermions 7 and {&},
where a=1,...,2n—1. Then define the 2n—1 I' matrices
I'=in&. The product,

A=FIF2‘"an_1=i7]§1§2"'§2n_1, (1)

then commutes with each of the I'* and furthermore satisfies
A%2=(-1)"""; hence we can choose A=A=i""1, which is to
say that all states in each local Hilbert space satisfy A|¥)
=\|¥). Now consider a lattice £ of coordination number z
=2n-1 in which the link lattice is itself z partite. That is to
say that each link can be assigned one of z colors, and no two
links of the same color terminate in a common site. On each
link {ij) of the lattice, then, we can write interaction terms
U1 =~u;;-imm;, where i and j are the termini of the link
and u;;= ig;’g;?, where a is the color label of the link. Note that
uizj:l, furthermore [u;;,u,)]=0 for all (ij) and (kl), and in
particular even if these links share a common terminus.
Thus, the set {u;;} defines a configuration for a classical 7,
gauge field. Note that u;;=-u;;. The model is then

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.79.134427

WU, AROVAS, AND HUNG

H=- 2 J,ITe, 2)
(i)
=E Jijuij - impmy, 3)

(ij)
where the “color” index a is associated with each particular
link. The honeycomb lattice satisfies the above list of desid-
erata, with z=3. Accordingly, the Kitaev model has interac-
tions o707} on 0° links, o707} on 120° links, and o707 on 240°
links.

For n=2, the I matrices are of course the Pauli matrices,
and the set {1,0%,0”, 0%} forms a basis for rank-2 Hermitian
matrices. For n=3, in addition to the five I' matrices, we can
define (*5")=10 additional matrices,

e = - {[re ") =-ig'¢, @

resulting in a total of 1+5+10=16, which of course forms a
basis for rank-4 Hermitian matrices. For n=4, we add the
211y =36 matrices [%¢ = & ¢ to the T (21 total), [ (7
total), and 1, resulting in the 64 element basis of rank-8
Hermitian matrices, etc.
For each closed loop C on the lattice, one can define a 7,
flux, which is a product,

Fe= H Uijs (5)
(ijyeC
where the product is taken counterclockwise over all links in
C. If C is a self-avoiding loop of N sites (and hence N links),
then
Fi == TovaT%192 .. T9N-19N (6)
112778 B 5] N
These fluxes are all conserved in that they commute with
each other and with the Hamiltonian. Under a local gauge
transformation, the Majoranas transform as 7;,— —;, which
is equivalent to taking u;;— —u;; for each link emanating
from site i. The gauge-invariant content of the theory thus
consists of the couplings {J/;;} and the fluxes {Fp} associated
with the elementary plaquettes P. For a given set of fluxes,
there are many (gauge-equivalent) choices for the u;;. By
choosing a particular such gauge configuration, the Hamil-
tonian of Eq. (3) may be diagonalized in a particular sector
specified by the Z, fluxes.

It is worth emphasizing the following features of the F as
defined in Eq. (5). First, a retraced link contributes a factor of
—1 to the flux because u;;-u;=—1. This has consequences for
combining paths. If two loops C and C' share k links in
common, then Fepr=(~1)*FoF:, where CC' is the concatena-
tion of C and C’, with the shared links removed. Consider, for
example, the triangles ABD and BCD in the left panel of Fig.
1. The combination of these triangles yields the square
ABCD. One then has

Fapp - Fpep=UapUppipa - UpclhcpUpps

=uypupciicpips(—1) == Fapcp  (7)

since the single link BD is held in common but is traversed
in opposite directions.
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FIG. 1. (Color online) The decorated square lattice (right) with
linked diagonal bonds for the Hamiltonian of Eq. (8). Each unit cell
(left) consists four sites (A, B, C, and D), ten links, and six
plaquettes including two squares and four triangles. The bonds are
classified into five types as marked with labels a which run from 1
toSand 1’ to 5'.

A second point regarding the fluxes Fy is that if n(C) is the
number of links contained in C, then traversing C clockwise
rather than counterclockwise results in a flux of Fe-1=(
—1)"©F,. Thus, the 7, flux reverses sign for odd length
loops if the loop is traversed in the opposite direction. For
loops of even length, the flux is invariant under the direction
of traversal.

B. Model definition

Our generalization of Kitaev’s model involves an n=3
system on the decorated square lattice depicted in Fig. 1. The
link lattice is five-partite: each lattice node lies at the conflu-
ence of five differently colored links. We will take the side
length of each square to be a. The lattice constant for the
underlying Bravais lattice, i.e., the distance between two
closest A sublattice sites, is then a’=2a. The model is that of

Eq. (2),

H=-J, 2 [[T}-1, 2 Ii-73 2 113

1 links 2 links 3 links
414 S5
-J, 2 Tiri-J5 2 T, (8)
4 links 5 links

While the structural unit cell shown in the left panel of Fig.
1 contains distinct bonds, labeled with a among {1, ...,5} or
{1’,...,5'}, and is solvable with ten distinct couplings J,,, we
shall assume J,=J,, etc.

The 4 X4 I" matrices may be explicitly taken as

r1=i<0 —}I)’ 1“2»3»4:(& o*>’ r5=(0 1[>’
10 0 -G 10

where | and ¢ are the 2 X 2 unit and Pauli matrices, respec-
tively. These five I" matrices are in fact spin-quadrupole op-
erators for the spin—% system.>> The other ten I" matrices,
defined above in Eq. (4), contains both spin and spin octu-
pole operators.*37 For later convenience, the ten I'“” matri-
ces are also written explicitly here as

)
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F12,13,14:( ‘7) F25’35’45:i(0 _‘7)
a0/ g 0

F34’42’23=<& 0) I~51:<]I O)
0 ¢/ 0 -1/

From the six Majorana fermions, we may fashion three
Dirac fermions, viz.,

)

(10)

coa=3(n+if"), (11)
c1s=3(€ - i8), (12)
e =3(€~iE). (13)
The three diagonal I" matrices can be represented as
F4=2C84C04— 1, (14)
FISZZCTSCIS— l, (15)
I3 =2clc0— 1. (16)

The basis vectors of the physical space in terms of the S°
eigenstates are as follows:

[+ 3) = claclsclal ), (17)
[+3) =iclslQ), (18)
|- 3) =chlo), (19)

|- 3) =—icll ), (20)

where [Q) is the reference vacuum state. In other words, the
physical states have odd fermion occupation number n
=c$4co4+c*;5c15+c£3cz3. The R matrix defined in Sec. II C can
be represented as R=—i(c;s+c]s)(co3—chs).

For each of the six plaquettes per unit cell, one defines a
7, flux as in Eq. (5). For example, for the ABD’ triangle
shown in Fig. 1 enclosed by the a=2, a=3, and a=5 bonds,
we have

Fappr = GEENIEE &), &) =-T7TETS,. (21)

These fluxes are all conserved in that they commute with
each other and with the Hamiltonian. As pointed in Refs. 7
and 8, the flux configuration for the ground state on the tri-
angular lattice is odd under TR symmetry; thus the ground
state breaks TR symmetry and is at least doubly degenerate.

C. Time reversal

The TR transformation is defined as the product 7=RC,
where C is the complex-conjugation operator and R is the
charge conjugation matrix, satisfying R>=—1 and R'=R"!
=R'=-R. Explicitly, we can take R=T"' I*=¢!&. Note that
RT“R=—(T"%)" and RT'*’R=(T"“*). Acting on the Majoranas,
the complex-conjugation operator C is defined so that
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7 n
C 51,3 C - 51,3 (22)
§2,4,5 _ §2,4,5

With these definitions, the I'* operators are even under TR
while the ['* operators are odd. Note that R%R= 7. Thus, the
effect of the time-reversal operation on the fluxes F¢ is the
same as that of reversing the direction in which the loop is
traversed, i.e., RF.R=(—1)"9F,, where n(C) is the number
of links in C.

D. Projection onto the physical sector

As we have seen, in terms of the Majorana fermions, the
I" matrices are represented as

Ti=ipe, To=—igg, (23)

We further demand that any physical state |[¥) must satisfy
A|¥)=—|¥), where A,=T!T?T T/ on each lattice site i
[see Eq. (1)]. That is, each state in the eigenspectrum is also
an eigenstate of the projector P=H,~%(1—Ai), so the local
Hilbert space at each site is four dimensional rather than
eight dimensional. Since [H, P]=0, the two operators can be
simultaneously diagonalized. For any eigenstate | V) of H in
the extended Hilbert space (with local dimension eight), we
have that P|W) is also an eigenstate of H, and with the same
eigenvalue. Thus, we are free to solve the problem in the
extended Hilbert space, paying no heed to the local con-
straints, and subsequently apply the projector P to each
eigenstate of H if we desire the actual wave functions or
correlation functions. Note also that while the projector P
does not commute with the link 7, gauge fields u;;, neverthe-
less [P,F:]=0 for any closed loop C, so the projector does
commute with all the 7, fluxes, which, aside from the cou-
plings, constitute the gauge-invariant content of the Hamil-
tonian.

E. General Majorana Hamiltonian

The general noninteracting lattice Majorana Hamiltonian
is written as H=%Ei,szj7li7lj’ with H=H'=-H* and
{m;. m}=26;. Let R denote a Bravais lattice site, i.e., a site
on the A sublattice, and the index [e{l,...,2r} labels a
basis element; our model has r=2. The Majorana fermions
satisfy {7,(R), 7, (R')}=206gg' 8, and Fourier transforming
to 7,(k)=N""Zgn(R)e~*®+d) where N is the number of
unit cells and d, is the location in the unit cell of the /™ basis
site, we arrive at the Hamiltonian,

M= S Hy ) m- 0k, @4
k

where Hy;(k)=3gH;;(R—-R")e* ®'R+di—d) gatigfies
Hyp(k) = H, (k) = = Hp (k) == H,, (- k), (25)

and 7,(—k)=1 (k). The eigenvalues of H(k) occur in pairs
{Ej(k),—Ej(—k)}, where j e{l,...,r} where 2r is the number
of basis elements. Written in terms of Dirac fermions, the
diagonalized Hamiltonian takes the form
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r

H=2 2 Qv vx— DEK). (26)

k j=1

and therefore the ground-state energy is

Ey=-2 2 |E;(k)| (27)

K j=I1
and the excitation energies are w,(k)=2|E;(k)|.

F. Bulk and edge spectra

Following the procedure outlined by Kitaev,” we represent
the Hamiltonian H in the extended Hilbert space in terms of
free Majorana fermions hopping in the presence of a static 7,
gauge field, as in Eq. (3). The spectra can be solved in each
gauge sector with a specified distribution of the 7, phases
uj==*1.

' In the extended Hilbert space, all the link phases u;; mu-
tually commute with each other and with the Hamiltonian.
The product of the link phases around a given plaquette
gives the 7, flux associated with that plaquette, as in Eq. (5).
It is the 7, fluxes of all the triangular and square plaquettes
which define the gauge-invariant content of the model.

The structural unit cell, as shown in the left panel of Fig.
1, consists of four sites, ten links, and six plaquettes. Sup-
pose that the arrangement of fluxes F; has the same period as
this structural cell. What of the link phases u;;? It is easy to
see that if the total 7Z, flux of the structural unit cell is +1;
i.e., if the product of the F over the six plaquettes in the
structural unit cell is +1, then the u;; may be chosen so as to
be periodic in this unit cell. In such a case the magnetic unit
cell coincides with the structural unit cell.?® If, however, the
net Z, flux per structural unit cell is —1, then the smallest
magnetic unit cell (i.e., periodic arrangement of the link
phases u;;) necessarily comprises two structural cells. Here,
we assume that the net flux per structural cell is +1, so the
magnetic and structural unit cells coincide. Thus, there are
five (and not six) Z, degrees of freedom per unit cell, which,
using the labels of Fig. 2, can be taken to be the link phases,

Usp = 0, Upcr = 09, Uppr = O3, (28)

Uppr = Oy, Uppr = O5. (29)

The remaining five values of u;; can then be fixed, and we
take

Upp=Ucp=Ucrg =Ucp=Ucrpr = 1. (30)

The fluxes of the triangular and square plaquettes are then
given by

Fagcp=01  Fyerpr = 05,

FAD’C"B’=0-3O-4 FC’DA=_0-10-2’

Fpppr == 0405  Fppcr = 0,03.

Thus, there are 23=32 possible distinct flux configurations
which are periodic in this unit cell. Any arrangement of the
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FIG. 2. (Color online) When the magnetic and structural unit
cells coincide, there are five 7, gauge degrees of freedom, which
we take to be oj_s as shown, with usp=0, etc. The other u;; are
positive for links where the black arrow points from i to j.

u;; phases consistent with zero total flux per cell is therefore
identical or gauge equivalent to one of these 32 configura-
tions.

We set the coupling on the horizontal links to Jy, on the
vertical links to Jy, and on the diagonal links to Jp. The
independent nonzero elements of Hj; (k) are then

Hyp(k) = iJ (' + 03¢7102), (31)
Hy (k) = iJ porye™ 072 (32)
Hyp(k) = iJ (a4e' " + 0r1e77?), (33)
Hgc(k) =—2iJy cos(6,/2), (34)
Hpp(k) = iJyose =02 (35)
Hep(k) =2iJy cos(6,/2), (36)

where we define the angles (0, 6,)=(k.a’,k,a’).

We have found that the ground-state energy is minimized
when the 7, flux through each of the four squares in the unit
cell is Fn=-1, and the triangles all are the same value, i.e.,
Fx==1. Under time reversal Fg— F and F,— —F,. Note
that the 7, flux through either square which contains a diag-
onal bond is Fy=—F4=—1 if the triangles contain the same
flux. The flux pattern with Fg=F ,=—1 is achieved with the
choice

(0'1,0'2,0'3,0'4,0'5)=(— 1,—1,+1,— 1,— 1) (37)

With this link flux assignment, the Hamiltonian matrix H(k)
takes the form
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0 2iJy cos(6,/2)
—2iJy cos(60,/2) 0
H(k) = 10+ .
iJpe 2iJy cos(6,/2)
2ily cos(6,/2)  idpelh=02)2

The eigenvalues of H(k) are found to be

Evak) == 2\ + (24 P)f(k) = I\ T+ Pk,

(39)
Eyi0) = + 2% + G+ )10 T o\ T+ Rk,
(40)
where
1 1

Jé cosz<501) + J‘z/ cos2<502)
f(k) = J%[+J%/ P (41)
g(k) :cos(%&l)cos(%ﬁz). (42)

In Fig. 3 we plot the total energy per site for our model for
all possible flux configurations for our model (32 in total),
where we have taken Jy=J,=J, which we here and hence-
forth assume. We explore the properties of our model as a
function of the dimensionless parameter J,/J. Since time
reversal has the effect of sending F——F or all odd-
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a/nt

FIG. 3. (Color online) Total energies (per site) versus «
=tan~!(Jp/J) for our decorated square lattice model. Curves for all
possible flux configurations are shown. The flux configurations for
the two lowest-lying total energy states are twofold degenerate ow-
ing to time reversal, which reverses the flux in the odd-membered
loops. The third-lowest-lying total energy state has an eightfold
degenerate flux configuration. At a:%ﬂ' the horizontal and vertical
bond strengths vanish and the system becomes a set of disconnected
dimers.
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— iJpe 002 24, cos(6,/2)

—2iJycos(6,/2)  —iJpe )2 -
0 2iJy cos(6,/2)
—2iJy cos(60,/2) 0

membered loops, every state must have an even-fold degen-
eracy. We find that the flux configurations with the two
lowest-lying total energies are each twofold degenerate, and
the third-lowest-lying total energy flux configuration is eight-
fold degenerate. In Fig. 4 we show the spectra E;(k) for the
lowest energy flux configuration.

Our model exhibits a topological phase transition as in-
creasing Jp/J. At Jp/J=0, the dispersion is gapless, with a
Dirac cone at (6, 6,)=(m,m). As Jp/J#0, this spectrum
becomes massive with a gap A(ar,7)=2Jp. This is a topo-
logically nontrivial phase, characterized by nonvanishing
Chern numbers, with concomitant gapless edge modes inside
the gap between bands 2 and 3 in a sample with an open
boundary, as depicted in Fig. 5(a). As Jp/J increases, the
second and third bands are pushed toward each other at the
Brillouin-zone center. These bands eventually touch when
Jp/J=242, forming there a new gapless Dirac cone. For
Jpld >242, the system is in a topologically trivial phase in
which the edge states no longer exhibit a spectral flow, and

6,/
_1_0.500.51

R
"%
%

7
0
&

Lr
55

FIG. 4. (Color online) The band structure of Eq. (38) at Jp/J
>0. (a) Jp/J=1 with a massive Dirac spectrum at (7, ) with the
gap value 2Jp; (b) Jp/J =212 where a gapless Dirac cone appears;
and (c) Jp/J=3.5. The gap value at (0,0) is 2|J,—2+2J]. A topo-
logical phase transition occurs from a topological nontrivial phase
at Jp/J <22 to a trivial phase at Jp/J>2+2.
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J =1
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1

E/J
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(b) OI/TI

FIG. 5. (Color online) (a) The gapless edge modes of 7 fermi-
ons across the band gap appear in open boundary samples in the
topologically nontrivial phase at Jp/J< 2y2. (b) The edge modes
become nontopological at Jj,/J>2+2.

they remain confined within the band gap, as shown in Fig.
5(b). In this case, the edge states are no longer topologically
protected, and they are sensitive to local perturbations, and
indeed can be eliminated by sufficiently strong such pertur-
bations. The gap located at (6,,6,)=(0,0) is found to be
A0,0)=2[7,—242J].

G. Spin correlation functions

As is the case with Kitaev’s model,'® the spin correlation
function in our ground state is short ranged due to the con-
served flux of each plaquette. We take the ground-state wave
function |W ;)= P| W) where |¥) is the unprojected state, with
each uj taking a value 1. Then (‘PG|F?FJb-|‘I’G)
=<\I'|P7],»7]j§f§1; |W). Unless sites i and j are linked, and un-
less a=b appropriate to the bond {ij), it is always possible to
find a loop whose flux is flipped by & or §f In that case,
since 7;7; and P do not change the loop flux, the above
expectation value vanishes. A similar reasoning shows that
any two-point correlation of the type of (‘I’G|F?F]C-d|‘I’G) or
(WgT"T| W) vanishes as well.

Generally speaking, a nonlocal spin correlation function is
finite only if, in the Majorana representation of its operators,
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the &’s can be expressed as a product of the Z, gauge phases
defined on different links; i.e.,

[Tge=T11 ). (43)
(i (i
Similarly to the work of Ref. 8, it is natural to expect that
each topological excitation of a 7, vortex traps an unpaired
Majorana mode. These vortex excitations will exhibit non-
Abelian statistics. We are now performing numerical calcu-
lations to confirm this prediction.

III. EXTENSION TO 8 X8 I' MATRICES

The above procedure is readily extended to even higher
rank Clifford algebras, such as the n=4 case with eight Ma-
jorana fermions and seven anticommuting 8 X 8 I" matrices.
We choose the Majoranas to be {7, &} where r=1,2,3 and
a=1,2,3,4,5. We write F“=i7]1§“ as before, and we define
I%=i7?¢&. The Hamiltonian is

5
H=-2J, 2 [T¢-TyTs), (44)

a=1  a links

=2 Ty i} ) = 7). (45)
(ij)

Physical states are projected, at each site, onto eigenstates of

the operator A=in' P’ EEEE with eigenvalue +i.
We obtain the same behavior of #'> modes as before and
a flat band of zero energy mode of 7’. Within a fixed gauge
choice of U, ‘H is invariant under a suitably defined TR-like
transformation of as T, T~'=7, and T#,T'=—17,, which is
not related to the physical TR transformation. In the topo-
logically nontrivial phase, the %'? edge modes have opposite
chirality, which is robust in the absence of a perturbation of

the type ['®=i7'7?, which breaks the symmetry under T.
This behavior is similar to that of the *He-B phase in two
dimensions, which has been recently identified as a TR-
invariant topological superconductor.!”

IV. I'"MATRIX MODELS IN THE 3D DIAMOND LATTICE

The I'-matrix analogy of the Kitaev model is also extend-
able to the three-dimensional (3D) systems. We will consider
here a diamond lattice, which is fourfold coordinated, as il-
lustrated in Fig. 6. In the following, we will first describe a
model with a 3D Dirac cone and broken TR symmetry, and
then another one exhibiting 3D topological insulating states
with TR symmetry maintained.

A. 3D spin liquid with Dirac cone excitations

We first consider an n=3 model (4 X 4 I" matrices) in the
diamond lattice with explicit time-reversal symmetry break-
ing. Recall that the diamond lattice is bipartite, consisting of
two fcc sublattices. Each A sublattice site is located in the
center of a tetrahedron of B sites, and vice versa, as shown in
Fig. 6. We define the unit vectors,
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FIG. 6. (Color online) The 3D diamond lattice with the nearest
separation a and two sublattices A (filled circles) and B (hollow
circles). The unit vectors é , 3 4 are defined from each A site to its
four B neighbors (see text).

é=L(1,-1,1) é,=~(-1,-1,-1), (46)

which point from a given A sublattice site to its four B sub-
lattice neighbors. The basis vectors for the underlying fcc
Bravais lattice, which can be taken to be the A sublattice
itself, are then

a;=é;—é,=%(1,1,0). (47)

A general A sublattice site lies at R=na;+n,a,+nsaz; The
two-element diamond unit cell may be taken to consist of the
A site at R and the B site at R+é,. It is also useful to define
the null vector a,=é,—¢,=0.

The Brillouin zone of the fcc-Bravais lattice is a dodeca-
hedron. The elementary reciprocal lattice vectors, which
form a basis for a bee lattice, are

= Sa(-1,1,1),
=§7T(19_ 131)5

bgzgw(l,l,— 1), (48)

and satisfy a;-b;=2m5;, where i,j € {1,2,3}. Any vector in
k space may be decomposed in to components in this basis,
viz.,

0, 0, 05

k=—b+_—b,+ —bs. 49

20 ' 2w 2 2@ “49)

We then have k-a,=6,, with 6,=0.
We begin with the Heisenberg-type Hamiltonian,
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EJEWRM, (50)
—E EJ ”R 17]R7]R+e (51)
R a=1

We use the tilde to distinguish operators which reside on the
B sublattice from those which reside on the A sublattice.
Here we have defined

u;lt = ig;lfg;lhéa (52)

as the 7, gauge field on the link between R and R+é,,.
Within the diamond lattice, one can identify four classes
of hexagonal loops. Starting at any A sublattice site, we can
move in a cyclical six-site path by traversing consecutively
the displacement vectors {é,,—é,,é.,—é,,é,,—é.}. We label
this hexagon by the indices {(abc). Without loss of generality
we can assume a <b <c since any permutation of these in-
dices results in the same loop, traversed in either the same or
the opposite sense, depending on whether the permutation is
even or odd, respectively. According to the theorem of
Lieb,* the gauge flux in the ground state is —1 in each such
loop; thus we can set ugx=1 on each link, for each «
€{1,2,3,4}, because a circuit around a six-site loop in-
volves three AB links on which the 7, gauge field is u;
+1 and three BA links on which u;;=—1. Consider now

ij=

b b b .
Iy F;l?+e 1_‘R+e —eb uRuR+e € CL7R 7]R+éu—éb (53)
and
b
F?he F I‘R+e uRuR [ TR+é 77R+e1 (54)

These operators both break time-reversal symmetry, owing to

the presence of the I'*” and [ factors. However, owing to
the commuting nature of the 7, link variables uf, we may
add terms such as these to H, and still preserve the key
feature that the Hamiltonian describes Majorana fermions #
and 7 hopping in the presence of a static 7, gauge field.

To recover the point group symmetry of the underlying
lattice, we sum over contributions on each loop (abc). We
define the operators

a pab b
Va =I 1_‘R+e IﬂR+e —eb (55)
Vi = Tha Tt Thas, - (56)

The time-reversal violating term in our Hamiltonian is then
written as

4
=20 2 (hyVig + h, Vi), (57)

R a<b
We reiterate that this model is also exactly solvable due to

the commutativity of the link fluxes uj, and we assume ujy
=1 for all a and R.
Transforming to k space, we have the Hamiltonian matrix,
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k) Ak) )

Hy (k) = (A*(k) — ak)

(58)

where, after performing a unitary transformation to remove a
phase 3¢™/(%1+%2+99/4 from the diagonal terms, we have

4
> hyy sin(6, - 6,), (59)

a<b

w(k) =

4
> Iy, sin(6, - 6,), (60)

a<b

(k) =

4

Ak) =i, Je'%. 61)

a=1

The eigenvalues are E. (k)= * w?(k)+|A(k)]>. One finds
that E. (k) both vanish when k lies at one of the three in-
equivalent X points, which lie at the centers of the square
faces of the first Brillouin zone, at locations 2(b2+b3)
2(b1+b3) and 2(b1+b2) Expanding about the last of these,
we write O, =7+, 6,=m+, and O;=1i3; and assuming

J,=J and Eab=hab, we find to lowest order in i, , 5 that

W) = (12 = 1" = M)y = (02 = W+ h)

+ (hB+ 12 + 1Py,
AGK) = I + 4 = ). (62)
If we write k——(b1+b2)+q, then we have
Ge= 2t + o+ ), (63)
= 2= o+ ). (64)
0-= 2+ o= ). (65)

Thus, the term w(k)=®(k) can be written as hk-g , where
£ is a unit vector lying in the (x,y) plane, and % is some
combination of the h,,. The spectrum is therefore that of a
deformed Dirac cone, linear in the two directions ¢, and Z,
and quadratic in the third. These deformed Dirac cones can
be made gapped by introducing anisotropy in the J terms,
say, J4#J, ,3=J. The system may then become a 3D topo-
logical insulator with TR symmetry breaking by developing
chiral surface states.

At this point we must ask whether the & are Majoranas.
Indeed, for the Hamiltonian H="Hy+H,, the & Majoranas
form a flat band at zero energy. To provide a dispersion for
the & branch, we define a new Hamiltonian H§5 which we
form from 7 with the replacements I'*— I'>¢. Equivalently,
we can skip to the final form of H in terms of 7 and 7]R+e

and replace them with §R and §R +é, respectively. Combining

these individual Hamiltonians to form H=H"- H§ results in
a matrix H(k) of the form

PHYSICAL REVIEW B 79, 134427 (2009)

Rté,—e,+é,

R-¢,+é,
€p

R+é,

FIG. 7. (Color online) A noncoplanar hexagonal ring within the
diamond lattice.

w(k) 0 A(k) 0
0 -ok 0 Ak
HO= 0 0 —o 0
0 -A%k) 0 w(k)
= w(k)y* - Re A(k)y"* + Im A(k)y®, (66)

where the row and column indices range over 7, &, 7, and

55, consecutively. The y matrices here are used as a basis for
4 X 4 Hermitian matrices, which are not to be confused with
the spin and spin-multipole operators denoted as I" matrices.
Nevertheless we still choose y* and 9 taking the same val-
ues as the matrix forms of I'“ and I'®* defined in Eqgs. (9) and
(10).

Again the spectra of Eq. (66) exhibit gapless Dirac cones
at the three X points. This gapless excitation is robust if there
are no mixing terms between 7 and & fermions, which
would appear as terms involving {y*,9’,y**,y*}, corre-
sponding to same sublattice hopping, or {2, y'3,+%°,¥*},
corresponding to alternate sublattice hopping. The introduc-
tion of such couplings can produce a gap in the spectrum and
give rise to spin-liquid states (Fig. 7).

B. Time-reversal symmetry properties

The Hamiltonian matrix H(k) is Hermitian and can there-
fore be expanded as

H(k) = E No(k) Y + E Nap(l) Y7, (67)

a<b

where the couplings A\, and \,, are real functions of their
arguments. Due to the conditions of Eq. (25), we see that
these couplings come in two classes. The coefficients of
purely real, symmetric y matrices must satisfy \(k)=—A(
—k); we call this class odd or —. The coefficients of the
purely imaginary, antisymmetric y matrices must satisfy
M(k)=N\(=k); we call this class even or +. Thus, we have

ClaSS - :]I,)\z,)\4,)\5,7\12,)\14,)\23,)\34,)\15,)\35,

class + :)\1,)\3,)\13,)\24,)\25,)\45. (68)

The periodicity under translations k — k+G through a recip-
rocal lattice vector then requires AN(G/2)=\(-G/2)=0 for
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FIG. 8.
structure.

(Color online) First Brillouin zone for the fcc

the odd class. For three-dimensional systems, there are eight
wave vectors within the first Brillouin zone which satisfy this
condition, i.e., k=%(n1b1+n2b2+n3b3) for n;=0 or 1, which
are identified as the zone center I', the four inequivalent L
points, and the three inequivalent X points (see Fig. 8).

If we consider (77, &) as a Kramers doublet of pseudospin
up and down, we can define a TR-like antiunitary transfor-
mation 7 as

T=iy"C, (69)

where C is the complex-conjugation operation. Under this
operation, we have

T =8, TET'=-7. (70)

The y matrices then divide into two classes under time re-
versal: even (79T '=1) or odd (79T '=-7). We find

T—-even:l, ys, 'yls, yzs’ ');5, 'y45,

T— Odd:'yl,'}’z,'y},'}/4,'}/12,')/13,')’]4,')/23,'}/24,')/34- (71)

Since 7 also reverses the direction of k, sending k— —k,
time-reversal symmetry requires that the coefficients of the
T-even y matrices satisfy \(k)=\(=k), while the coefficients
of the 7-odd y matrices must satisfy \(k)=-\(-k). Taking
into account the division into even and odd classes, we find
that time-reversal symmetry, i.e., THT '=H, requires the
vanishing of the following coefficients:

N =N3=N3=N5=Ny=N35=0 (72)

(forbidden by 7 symmetry).
We may also define a parity operator P as

P=7"1, (73)

where 7 is the lattice inversion operator which inverts the
coordinates relative to the position r=%é4. Under P we then
have the classification

PHYSICAL REVIEW B 79, 134427 (2009)

TABLE I. Symmetry properties of the vy matrices.

v Class 7 P PI y Class T P PT
I e R
) N -4 15 _ + -
2 B - 3 _ -+ -
% + - o+ - + - - F
V _ - _ + 3 + + - -
T
Y12 _ -+ - ¥ - + - -
Y13 + -+ - ¥ + + o+ +
P —even:l, 'yl, 72, )/3, ’ylz, 713, }’23, ?’45,
P —odd:y*, v, v, ¥, 4 P, 4, 5. (74)

Parity also acts on crystal momentum, sending kK — —k. As a
result,

Ay =Np=Ny=Nps=A3=0 (75)

(forbidden by P symmetry).
Note that the product P7 does not reverse k and is given
by

PT=yCT. (76)

A summary of the symmetry properties of the different y
matrices is provided in Table I.

C. 3D topological states with TR symmetry

Recently, topological insulating states in three dimensions
have attracted a great deal of attention.**-*® Below we will
show by adding the hybridization between 7 and & fermions
that we can arrive at the gapped spin-liquid states which can
be topologically nontrivial.

We begin with the additional hybridization term,

R+é,” R+é ¢,

4
AH =2\ m(Ty+Thee) + 2 gal kit T
R

a#b
4
~ Ta abbs
+2 8tV res TR TRss, [ - (77)
a*b
Note that
afab b5 _ a b s
URURes URsé -6, = URUR 6 ¢, 1IRERs ~5,»  (78)
ra abpb5  _ a b . 5
Ukie TR URie, = URUR - 1TIR4¢ ERoe,- (79)

Assuming once again that up=1 for all R and a, and further
taking g,,=gp, this leads to the matrix Hamiltonian
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o) Bl AW 0
g0 e 0 -am
HO= v 0 —o0 B0

0 -A'Kk) B'k) wlk)
= w(k)y* + Re A(k)y"* - Im A(k)y* + Re B(k)y*
+Im B(k) v, (80)

where

Bk)=im+ iz gabei(au_ab). (81)
a,b

The spectra for each momentum k is doubly degenerate, and
the two degenerate energy levels are found to be

E.(k)= * Vo (k) + |A(K)]? + | BU) . (82)

In the presence of the 7 symmetry, Im B(k)=0. This can be
achieved if we take m=0 and the coupling matrix g to be
antisymmetric, i.e., g,,=—gp,- The system still possesses the
additional parity symmetry of P=y"T.

As a specific example, consider the case

hiy=hiz=hyz=h,

hiy=hy=h3, =0, (83)
and

g12=813=83=0,

8u=8u=8u=2g, (84)

where the elements of g,, below the diagonal follow from
antisymmetry. Then

w(k) = h[sin(6, — 6,) + sin(6; — 6;) + sin(6, — 65)],
(85)

B(k) = g[sin 6, + sin 6, + sin 6;]. (86)

Note that w(k), Re A(k), and Re B(k) all vanish at the eight
wave vectors k=%(n1b1+nzb2+n3b3) for n;=0 or 1, which
includes the zone center I, the four L points, and the three X
points (which are the three Dirac points). If J;,34=J, the

PHYSICAL REVIEW B 79, 134427 (2009)

system remains gapless at three X points because [Im A(k)
=0. By tuning J, # J, , 3=J, the system can be made gapped,
where the gap at the X points is [Im A(k)|=|J,—J|. This situ-
ation is the same as the Hamiltonian of the 3D topological
insulator studied by Fu and Kane.*! Following their reason-
ing, whether or not the insulating states are topological can
be inferred from the parity eigenvalues of y*3 of the occupied
states. The system is topologically nontrivial for J,>J, in
which case it exhibit surface modes with an odd number of
Dirac cones in open surfaces.

On the other hand, if we relax the requirement of both 7°
and P symmetries and only keep the combined symmetry of
P7, then all five coefficients are allowed in Eq. (80) and each
energy level remains doubly degenerate. However, the analy-
sis in Ref. 41 no longer applies. We expect then a more
diverse set of topological insulators, the study of which will
be deferred to a future investigation.

V. CONCLUSION

In summary, we have generalized the Kitaev model from
the Pauli matrices to the Clifford algebra of I' matrices. This
enriches the physics of topological states, including the two-
dimensional (2D) chiral spin liquids with nontrivial topologi-
cal structure, as well as that of topological spin liquids with
time-reversal-like symmetries. Possible topological insulat-
ing states on the 3D diamond lattice were also discussed.

Note Added. During the preparation of this work, we
learned of similar work on a I'-matrix extension of the Ki-
taev model on the square lattice in which a gapless algebraic
spin liquid was studied*’ and also of work on three-
dimensional topological phases of the Kitaev model on the
diamond lattice.*®
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